A Trust Based Smart City Adoption Model for the Australian Regional Cities: A Conceptual Framework

Research in Progress

Chiranjivi Neupane
School of Engineering and Technology
Central Queensland University
Rockhampton, Queensland
Email: chiranjivi.neupane@cqumail.com

Santoso Wibowo
School of Engineering and Technology
Central Queensland University
Melbourne, Victoria
Email: s.wibowo1@cqu.edu.au

Srimannarayan Grandhi
School of Engineering and Technology
Central Queensland University
Melbourne, Victoria
Email: s.grandhi@cqu.edu.au

Md Rahat Hossain
School of Engineering and Technology
Central Queensland University
Melbourne, Victoria
Email: m.hossain@equ.edu.au

Abstract

With nearly half of the world’s population living in the cities, many city and local governments are seeking to deploy smart solutions to their everyday city operations through the implementation of smart city services. However, the subject of smart city services has always been associated with trustworthiness of the services by its users due to security and privacy concerns. These issues may have a major impact on the smart city services adoption. The aim of this proposed research is to examine the technology, organisational, environment, and security determinants that influence stakeholders’ trust towards their intention to adopt smart city services in Australian regional cities. For this, Technology-Organisation-Environment framework together with security related factors for ensuring stakeholders’ trust will be tested using both quantitative and qualitative data. Structural equation modelling technique will be carried out using Smart PLS to test the presented hypotheses and the results will be finally discussed.

Keywords: Smart cities, adoption intention, security, trust, TOE framework, Australia regional cities.
1 INTRODUCTION

The worldwide urban population account to about 70% and this figure is expected to double in the next three decades (Braun et al. 2018). To address the problems that may arise due to the population growth and to improve the living standards of their citizens, local cities are transforming to smart cities (Dewi et al. 2016). Smart city services are ICT assisted intelligent services aimed at enhancing liveability, workability and sustainability by making the urban infrastructure and services efficient and integrated (Braun et al. 2018; Dewi et al. 2016). Literature highlights several benefits with smart city services. The benefits include smart energy, smart parks, smart precincts, smart lightings, smart transportations, smart water, smart governance, smart tourism, smart security and safety (Dewi et al. 2016; Zoonen 2016). Despite the benefits, there are security and privacy challenges that often influence the adoption of these smart city services. Saif Almuraqab and Jasimuddin (2017) point out that security challenges as a key factor towards the adoption of smart cities. This is further supported by Braun et al. (2018) and Dewi et al. (2018) who claim that security and privacy are major concerns for smart cities adoption. The use of innovative and smart technologies for smart city transformation is essential, but the intention to adopt the available technologies by its stakeholder is more important. According to Mayer et al. (1995) trust is the readiness to be vulnerable by the actions of another party. It is identified as a critical component for the technology adoption, as it addresses risk vulnerability and uncertainty (Gefen et al. 2003).

Trust and security are interrelated in adopting new technologies as individual’s belief on security may have an influence on their adoption intention behaviour. In fact, previous studies considered trust as a factor in predicting intention behaviour (Belanche et al. 2012). Although, previous studies (Chourabi 2012; Dewi et al. 2016; Zoonen 2019) have been conducted on the importance of security and privacy for the adoption of smart cities through the development of a security model, these studies were limited to Technology, Organisation and Environmental factors, leaving the security and privacy implications behind. Literature presents limited evidence on smart cities adoption in Australian cities, let alone the effect of security and privacy on trust in the smart city services adoption by the Australian regional cities. Based on a report by the Australian government (2018), many regional cities are suffering from low or negative growth, as jobs lost in the manufacturing sector, or more recently the resources and energy sectors, are not replaced quickly enough. Hence, it is critical for the government to plan for the future of regional cities by maximising their unique advantages and supporting their long-term growth through the development and implementation of smart city services whereby Australian regional cities can reach their full potential. Therefore, this study aims to provide a comprehensive review of factors that influence stakeholder’s trust towards intention to adopt smart city services in the Australian regional cities. Furthermore, this paper proposes a conceptual framework by reviewing the models used for studying the users’ adoption behaviour towards new innovations. This study aims to understand the role of security related factors in influencing stakeholders’ trust towards their intention to adopt smart city services.

2 LITERATURE REVIEW

Smart city services have increasingly gained attention in academia, industry and governments in recent years (Braun et al. 2018). Although there is very limited research on trust-based adoption of smart city, literature presents various theories for the adoption of innovative technologies and factors such as trust and security have been widely used. Also, trust-based adoption of smart city services has not been studied using TOE framework. Scholars have proposed theories for the adoption of innovative technologies. Of these, most notable are Technology Adoption Model (TAM) (Davis 1989) and Technology, Organisation and Environment (TOE) model. TAM proposes that actual use intention of the technology is derived by the perceived ease of use and perceived usefulness of that technology (Davis 1989). Whereas, TOE model emphasises on studying the technology, organisation and environmental factors prior to new technology adoption (Tornatzky and Fleischer 1990). Interestingly, scholars (Gangwar and Ramaswamy 2015; Grandhi et al. 2019) presented the possibilities of adopting additional factors into the TOE model. This paper is backed by studies closely related to the context of the research. Using the original TOE model (Tornatzky and Fleischer 1990), this study presents a security related framework for the smart city adoption. Table 1 below presents previous studies using the TOE model.

<table>
<thead>
<tr>
<th>Model</th>
<th>Study on adoption of technology</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOE</td>
<td>Adoption of ICT security culture in small, medium and micro enterprises</td>
<td>Mokwetli and Zuva 2018</td>
</tr>
</tbody>
</table>
Table 1. Previous Studies on Technology Adoption Models

<table>
<thead>
<tr>
<th>Model</th>
<th>Study on adoption of technology</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOE</td>
<td>Influence of technology, organisation and environmental readiness towards smart city adoption decisions by local governments</td>
<td>Dewi et al. 2018</td>
</tr>
<tr>
<td>TOE and Human Organisation Technology (HOT)</td>
<td>Security determinants on cloud computing adoption by organisations. Study based on survey and interviews</td>
<td>Grandhi et al. 2019</td>
</tr>
<tr>
<td>Sec-TOE</td>
<td>Adoption of big data solutions by organisations</td>
<td>Salleh and Janczewski 2016</td>
</tr>
<tr>
<td>TOE</td>
<td>Decision making model for cloud computing adoption</td>
<td>Yoo and Kim 2018</td>
</tr>
<tr>
<td>TAM and TOE</td>
<td>Determinants of Cloud computing adoption</td>
<td>Gangwar and Ramaswamy 2015</td>
</tr>
</tbody>
</table>

2.1 Theoretical Framework

The theoretical framework developed in this study is based on the TOE model. The TOE model presents a number of dimensions that have influence towards adoption of innovation in organisations (Tornatzky and Fleischer 1990). Considering regional cities as public entities, the TOE model can be used to assess the determining factors towards an intention to adopt smart city services. Scholars have successfully used the TOE model to study the technology adoption intention. For example, Dewi et al. (2018) applied the TOE model to assess the influencing factors towards smart city adoption decision by public organisations. As this study aims to study the role of security related factors in influencing the stakeholders’ intention to adopt smart city services in the Australian regional cities, the proposed TOE-based framework adopts information security related factors. Hence the framework in Figure 1 has been proposed as Technology-Organisation-Environment-Security (TOES) framework. Table 2 presents variables in this study and the sources.

![Figure 1: The research framework](image)

2.2 Technology Related Factors

The technology can provide the required features and functions to perform a specific task (AlHogail 2018), but trusting a technology significantly depends on its ability to perform a task (Balasooriya et al. 2017). Helpfulness is the technology’s ability and support to facilitate suitable, effective and responsive advice, which may be required to perform a task including guidelines and instructions (McKnight et al. 2011). The smart city stakeholders may perceive that new technologies would support them in performing tasks would incline towards adopting such technologies (AlHogail 2018). Perceived usefulness is the subjective probability of user’s completion of a given task in an improved way (Guriting and Oly Ndubisi 2018).
2006). Jaafreh (2017) believes that the study of perceived usefulness and trust can have implication towards understanding the dynamic nature of trust and perceived usefulness. Earlier studies identified perceived usefulness as an important determinant in the new technology adoption intention (Colesca 2009). Hence, the following hypotheses have been presented:

H1: Functionality and reliability has positive influence towards trust in smart city services.

H2: Helpfulness positively influences trust in smart city services.

H3: Perceived usefulness of the smart city services positively influence stakeholder’s intention to adopt smart city services.

2.3 Organisation Related Factors

Top management support refers to the commitment and involvement level of the senior management for smart city services adoption. Hu et al. (2012) demonstrated that top management support results in better organisational security policy enforcement and better security culture. Smart city projects require support from the strategic personnel and leaders during the decision-making process (Dewi et al. 2018). In an organisational context, information security awareness is an employee’s knowledge and understanding about the information security policy and procedures (Bulgurcu et al. 2010). The security culture is created by instilling the concept of information security as usual duty of performance in the workplace. Therefore, it is reasonable to relate information security culture to the adoption of smart city services by its stakeholders.

H4: Top management support has positive influence towards trust on smart city services.

H5: Stakeholder’s security culture and awareness positively influence stakeholder’s trust in smart city services.

<table>
<thead>
<tr>
<th>Factors</th>
<th>Definition</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Functionality and reliability</td>
<td>It refers to capacity and ability of specific technology to provide the required features and functions for a specific task ensuring consistent and proper operations as predicted</td>
<td>AlHogail 2018; McKnight et al. 2011</td>
</tr>
<tr>
<td>Helpfulness</td>
<td>Technology’s ability and support to facilitate suitable, effective and responsive advice, which may be required to perform a task including guidelines and instructions</td>
<td>AlHogail 2018; McKnight et al. 2011</td>
</tr>
<tr>
<td>Perceived usefulness</td>
<td>The extent of user’s belief that use of technology would enrich their job performance</td>
<td>Davis 1989; McKnight et al. 2011; Saif Almuraqab and Jasimuddin 2017</td>
</tr>
<tr>
<td>Top management support</td>
<td>It refers to the extent of top management’s commitment and involvement towards technology adoption decisions</td>
<td>Dewi et al. 2018; Hameed et al. 2012; Salleh and Janczewski 2016</td>
</tr>
<tr>
<td>Security culture and awareness</td>
<td>Information security culture is a subdomain of the organisation culture where it supports information security to become imminent part in employee’s daily activities</td>
<td>Grandhi et al. 2019; Hameed and Arachchilage 2016; Saif Almuraqab and Jasimuddin 2017</td>
</tr>
<tr>
<td>Pressure from external partners</td>
<td>It refers to the pressure from other businesses such as partners or stakeholders in the supply chain that affects information security</td>
<td>Hashim et al. 2015; Ma and Ratnasingam 2008</td>
</tr>
<tr>
<td>Government policy</td>
<td>Government standards and regulations that may influence a business in terms of information security implementation</td>
<td>Balasooriya et al. 2017; Ma and Ratnasingam 2008</td>
</tr>
<tr>
<td>Self-efficacy in security</td>
<td>One’s belief in capability to safeguard the information and system from unauthorised disclosure, manipulation, loss, destruction, and non-availability</td>
<td>Dewi et al. 2018; Rhee et al. 2009</td>
</tr>
<tr>
<td>Perceived security</td>
<td>The probability by which users or consumers believe that their sensitive information will not be tempered with by either viewing stored data or manipulated during transmission or storage by unauthorised persons</td>
<td>Chellappa and Pavlou 2002; Dewi et al. 2018; Hameed et al. 2012</td>
</tr>
<tr>
<td>Perceived privacy</td>
<td>The tendency to be concerned regarding submitted personal information to the services including safety of possible monitory transaction with services</td>
<td>Dewi et al. 2018; Rauniar et al. 2013; Zoonen 2016</td>
</tr>
<tr>
<td>Trust</td>
<td>Probability that a participant in a transaction will act in beneficial way or at least not harmful way to other participants so that they can cooperate later</td>
<td>AlHogail 2018; Saif Almuraqab and Jasimuddin 2017</td>
</tr>
</tbody>
</table>

Table 2. Factors and Definitions
2.4 Environment Related Factors

Pressure from external partners and government policy are environmental related factors under consideration in this study. In many cases, an organisation may adopt a technology due to influences exerted by its business partners. This adoption of a new technology can significantly be influenced by external pressure, particularly when this technology directly affects the competition and is a strategic necessity. In this situation, the pressure to adopt new smart city services quickly is to provide better services and gain strategic advantages. However, the decision to do so may result in an unexpected security concern (AlHogail 2018). In relation to government policy, Zoonen (2019) believes that smart city services need to adhere strictly to the existing government policy, as non-compliance may result in additional transaction costs and potential legal outcomes. This is supported by Balasooriya et al. (2017) who found that government policies have a positive impact on organisations trying to adopt new information systems technology. Hence the following hypotheses have been presented:

H6: Perceived external pressure negatively influences trust on smart city services.

H7: Government policies have positive influence towards trust on smart city services.

2.5 Security Related Factors

Self-efficacy, being an important paradigm of social cognitive theory, proximally determines individual behaviour (Bandura 1986). Individuals with higher level of self-efficacy tend to have better motivation, cognitive resources and ability to mobilise themselves towards successful execution of a task (Stajkovic and Luthans 1998). Rhee et al. (2009) define self-efficacy in context of information security as a belief in one’s capacity to protect information and information systems from unauthorised disclosure, modification, loss, destruction, and lack of availability. Self-efficacy therefore is considered as a possible factor towards adoption of smart city services in terms of information security. Perceived information security is the probability by which users or consumers believe that their sensitive information will not be tampered with by either viewing stored data or manipulated during transmission or storage by unauthorised persons (Chellappa and Pavlou 2002). Security has been identified as a factor having significant concern towards the intention to adopt risky technologies that used internet (Saif Almuraqab and Jasimuddin 2017). Goldfinch et al. (2009) found security of government’s electronic services is an important factor towards its adoption by citizens. Hence, it can be generalised that intention to adopt new technology is fairly determined by its end user’s trust over the security and privacy of that technology. Chourabi et al. (2012) identified privacy and security as the influencing factor in the smart city initiative model. Privacy can also play a major role determining trust by the users or stakeholders of smart cities because smart cities are made up of multiple digital services (Belanger and Hiller 2006). Developing trust between smart city service providers and its users is vital (Schurr and Ozanne 1985) as it represents the willingness to assume the risk of information disclosure (Mayer et al. 1995). When there is minimal risk of security in the smart city services, there would be more trust towards such service or system. Tolbert and Mossberger (2006) categorised trust into two categories, process-based and institution-based trust. Based on the discussion, the following hypotheses have been presented.

H8: Self-efficacy in information security positively influences stakeholder’s trust in smart city services.

H9: Perceived information security of the smart city services positively influences stakeholder’s trust in smart city services.

H10: Perceived privacy of the smart city services positively influences stakeholder’s trust towards smart city services.

H11: Trust in smart city’s digital services positively influences stakeholder’s intention to adopt smart city services.

3 RESEARCH DESIGN

This research aims to test the role of technology, organisation and security determinants that influence stakeholders’ trust towards their intention to adopt smart city services in the Australian regional cities. A two-step mixed method is adopted in this research. In the initial step, a quantitative study using survey questionnaire will be conducted to test the conceptual framework and the subsequent hypotheses. Then the qualitative study based on semi-structured interviews will be conducted to clarify the results from the quantitative study. The target recipients of the study are IT professionals working in the Australian regional cities, who are knowledgeable about smart city services. SmartPLS software will be used to employ the structural equation modellings technique, as it helps to reveal the relationships between the measured variables and the latent constructs.
4 CONCLUSION

There are limited studies on trust-based adoption model of smart city services. The initiation and acceptance of smart city services need to be adopted by its stakeholders for the success of such services. This research study thus aims to provide empirical evidence regarding influences of technology, organisation, environment, and security related factors towards trust in smart city adoption intention by its stakeholders. So, conclusive goal of this study is to identify security related concerns that influence towards adoption of smart city services. The findings from this study have both theoretical and practical implications. The findings can be beneficial for academia, IT professionals and local governments for considering most influencing factors for adoption decision of smart city services in a region.

5 REFERENCES

Copyright: © 2019 Neupane, Wibowo, Grandhi & Hossain. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 3.0 Australia License, which permits non-commercial use, distribution, and reproduction in any medium, provided the original author and ACIS are credited.